Partner Choice during Meiosis Is Regulated by Hop1-promoted Dimerization of Mek1

Author:

Niu Hengyao1,Wan Lihong1,Baumgartner Bridget2,Schaefer Dana1,Loidl Josef3,Hollingsworth Nancy M.1

Affiliation:

1. Department of Biochemistry and Cell Biology, State University of New York at Stony Brook, Stony Brook, NY 11794-5215

2. Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030

3. Department of Chromosome Research, University of Vienna, A-1030 Vienna, Austria

Abstract

Meiotic recombination differs from mitotic recombination in that DSBs are repaired using homologous chromosomes, rather than sister chromatids. This change in partner choice is due in part to a barrier to sister chromatid repair (BSCR) created by the meiosis-specific kinase, Mek1, in a complex with two other meiosis-specific proteins, Hop1 and Red1. HOP1 contains two functional domains, called the N and C domains. Analysis of a point mutation that specifically inactivates the C domain (hop1-K593A) reveals that the N domain is sufficient for Hop1 localization to chromosomes and for Red1 and Hop1 interactions. The C domain is needed for spore viability, for chromosome synapsis, and for preventing DMC1-independent DSB repair, indicating it plays a role in the BSCR. All of the hop1-K593A phenotypes can be bypassed by fusion of ectopic dimerization domains to Mek1, suggesting that the function of the C domain is to promote Mek1 dimerization. Hop1 is a DSB-dependent phosphoprotein, whose phosphorylation requires the presence of the C domain, but is independent of MEK1. These results suggest a model in which Hop1 phosphorylation in response to DSBs triggers dimerization of Mek1 via the Hop1 C domain, thereby enabling Mek1 to phosphorylate target proteins that prevent repair of DSBs by sister chromatids.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3