Evidence that mating by the Saccharomyces cerevisiae gpa1Val50 mutant occurs through the default mating pathway and a suggestion of a role for ubiquitin-mediated proteolysis.

Author:

Xu B E1,Kurjan J1

Affiliation:

1. Department of Microbiology and Molecular Genetics, University of Vermont, College of Medicine, Burlington, USA.

Abstract

The yeast G alpha subunit, Gpa1p, plays a negative role in the pheromone response pathway. The gpa1Val50 mutant was previously shown to have a growth defect, consistent with the GTPase defect predicted for this mutation, and greatly reduced mating. Various explanations for the mating defect have been proposed. One approach to analyze the gpa1Val50 mating defect involved epistasis analysis. The low mating of the gpa1Val50 mutant was independent of the pheromone receptor; therefore, it results from intracellular activation of the pathway, consistent with a GTPase defect. This result suggests that gpa1Val50 mating occurs through the default rather than the chemotropic pathway involved in pheromone response. We therefore tested the effect of a spa2 mutation on gpa1Val50 mating, because Spa2p has been implicated in the default pathway. The spa2 mutation greatly reduced the mating of the gpa1Val50 mutant, suggesting that gpa1Val50 mating occurs predominantly through the default pathway. In a second approach to investigate the gpa1Val50 phenotypes, suppressors of the gpa1Val50 mating defect were isolated. Two suppressor genes corresponded to SON1/UFD5 and SEN3, which are implicated in ubiquitin-mediated proteolysis. On the basis of these results, we suggest that a positive component of the default mating pathway is subject to ubiquitin-mediated degradation.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3