Affiliation:
1. Department of Microbiology and Molecular Genetics and the Vermont Cancer Center, University of Vermont, College of Medicine and College of Agriculture and Life Sciences, Burlington, Vermont 05405-0068
Abstract
Abstract
The Saccharomyces cerevisiae RGS protein Sst2p is involved in desensitization to pheromone and acts as a GTPase-activating protein for the Gα subunit Gpa1p. Other results indicate that Sst2p acts through Mpt5p and that this action occurs downstream of Fus3p and through Cln3p/Cdc28p. Our results indicate that the interaction of Sst2p with Mpt5p requires the N-terminal MPI (Mpt5p-interacting) domain of Sst2p and is independent of the C-terminal RGS domain. Overexpression of the MPI domain results in an Mpt5p-dependent increase in recovery from pheromone arrest. Overexpression of either intact Sst2p or the MPI domain leads to partial suppression of a gpa1 growth defect, and this suppression is dependent on Mpt5p, indicating that MPI function occurs downstream of Gpa1p and through Mpt5p. Combination of an mpt5 mutation with the GPA1G302S mutation, which uncouples Gpa1p from Sst2p, results in pheromone supersensitivity similar to the sst2 mutant, and promotion of recovery by overexpression of Sst2p is dependent on both Mpt5p and the Gpa1p interaction. These results indicate that Sst2p is a bifunctional protein and that the MPI domain acts through Mpt5p independently of the RGS domain. RGS family members from other fungi contain N-terminal domains with sequence similarity to the Sst2p MPI domain, suggesting that MPI function may be conserved.
Publisher
Oxford University Press (OUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献