Dual Regulation of Actin Rearrangement through Lysophosphatidic Acid Receptor in Neuroblast Cell Lines: Actin Depolymerization by Ca2+-α-Actinin and Polymerization by Rho

Author:

Fukushima Nobuyuki12,Ishii Isao2,Habara Yoshiaki3,Allen Cara B.4,Chun Jerold2456

Affiliation:

1. Department of Molecular Biochemistry, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan;

2. Department of Pharmacology,

3. Department of Biomedical Sciences, Hokkaido University Graduate School of Veterinary Medicine, Sapporo 060-0818, Japan

4. Neurosciences Program,

5. Biomedical Sciences Program, School of Medicine, University of California, San Diego, La Jolla, California 92093-0636;

6. Molecular Neuroscience, Merck Research Laboratories, San Diego, California 91212; and

Abstract

Lysophosphatidic acid (LPA) is a potent lipid mediator with actions on many cell types. Morphological changes involving actin polymerization are mediated by at least two cognate G protein-coupled receptors, LPA1/EDG-2 or LPA2/EDG-4. Herein, we show that LPA can also induce actin depolymerization preceding actin polymerization within single TR mouse immortalized neuroblasts. Actin depolymerization resulted in immediate loss of membrane ruffling, whereas actin polymerization resulted in process retraction. Each pathway was found to be independent: depolymerization mediated by intracellular calcium mobilization, and α-actinin activity and polymerization mediated by the activation of the small Rho GTPase. α-Actinin–mediated depolymerization seems to be involved in growth cone collapse of primary neurons, indicating a physiological significance of LPA-induced actin depolymerization. Further evidence for dual regulation of actin rearrangement was found by heterologous retroviral transduction of either lpa1orlpa2in B103 cells that neither express LPA receptors nor respond to LPA, to confer both forms of LPA-induced actin rearrangements. These results suggest that diverging intracellular signals from a single type of LPA receptor could regulate actin depolymerization, as well as polymerization, within a single cell. This dual actin rearrangement may play a novel, important role in regulation of the neuronal morphology and motility during brain development.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3