Xenopus TACC2 is a microtubule plus end–tracking protein that can promote microtubule polymerization during embryonic development

Author:

Rutherford Erin L.1,Carandang Leslie1,Ebbert Patrick T.1,Mills Alexandra N.1,Bowers Jackson T.1,Lowery Laura Anne1

Affiliation:

1. Department of Biology, Boston College, Chestnut Hill, MA 02467

Abstract

Microtubule dynamics is regulated by plus end–tracking proteins (+TIPs), which localize to the plus ends of microtubules (MTs). We previously showed that TACC1 and TACC3, members of the transforming acidic coiled-coil protein family, can act as +TIPs to regulate MT dynamics in Xenopus laevis. Here we characterize TACC2 as a +TIP that localizes to MT plus ends in front of EB1 and overlapping with TACC1 and TACC3 in multiple embryonic cell types. We also show that TACC2 can promote MT polymerization in mesenchymal cells but not neuronal growth cones, thus displaying cell-type specificity. Structure–function analysis demonstrates that the C-terminal region of TACC2 is both necessary and sufficient to localize to MT plus ends and promote increased rates of MT polymerization, whereas the N-terminal region cannot bind to MT plus ends but can act in a dominant-negative capacity to reduce polymerization rates. Finally, we analyze mRNA expression patterns in Xenopus embryos for each TACC protein and observe neural enrichment of TACC3 expression compared with TACC1 and TACC2, which are also expressed in mesodermal tissues, including somites. Overall these data provide a novel assessment of all three TACC proteins as a family of +TIPs by highlighting the unique attributes of each, as well as their collective characteristics.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3