Direct Repression of Cyclin D1 by SIP1 Attenuates Cell Cycle Progression in Cells Undergoing an Epithelial Mesenchymal Transition

Author:

Mejlvang Jakob1,Kriajevska Marina1,Vandewalle Cindy2,Chernova Tatyana3,Sayan A. Emre1,Berx Geert2,Mellon J. Kilian1,Tulchinsky Eugene1

Affiliation:

1. *Department of Cancer Studies and Molecular Medicine and

2. Unit of Molecular and Cellular Oncology, Department for Molecular Biomedical Research, Flanders Institute for Biotechnology-Ghent University, BE-9052 Gent, Belgium

3. Medical Research Council Toxicology Unit, University of Leicester, Leicester LE1 9HN, United Kingdom; and

Abstract

Zinc finger transcription factors of the Snail/Slug and ZEB-1/SIP1 families control epithelial-mesenchymal transitions in development in cancer. Here, we studied SIP1-regulated mesenchymal conversion of epidermoid A431 cells. We found that concomitant with inducing invasive phenotype, SIP1 inhibited expression of cyclin D1 and induced hypophosphorylation of the Rb tumor suppressor protein. Repression of cyclin D1 was caused by direct binding of SIP1 to three sequence elements in the cyclin D1 gene promoter. By expressing exogenous cyclin D1 in A431/SIP1 cells and using RNA interference, we demonstrated that the repression of cyclin D1 gene by SIP1 was necessary and sufficient for Rb hypophosphorylation and accumulation of cells in G1 phase. A431 cells expressing SIP1 along with exogenous cyclin D1 were highly invasive, indicating that SIP1-regulated invasion is independent of attenuation of G1/S progression. However, in another epithelial-mesenchymal transition model, gradual mesenchymal conversion of A431 cells induced by a dominant negative mutant of E-cadherin produced no effect on the cell cycle. We suggest that impaired G1/S phase progression is a general feature of cells that have undergone EMT induced by transcription factors of the Snail/Slug and ZEB-1/SIP1 families.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

Cited by 176 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3