Immediate and Delayed Effects of E-Cadherin Inhibition on Gene Regulation and Cell Motility in Human Epidermoid Carcinoma Cells

Author:

Andersen Henriette1,Mejlvang Jakob2,Mahmood Shaukat1,Gromova Irina3,Gromov Pavel3,Lukanidin Eugene1,Kriajevska Marina2,Mellon J. Kilian2,Tulchinsky Eugene2

Affiliation:

1. Department of Molecular Cancer Biology, Danish Cancer Society, Strandboulevarden 49, Copenhagen 2100, Denmark

2. Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester LE1 9HN, United Kingdom

3. Department of Proteomics in Cancer, Danish Cancer Society, Strandboulevarden 49, Copenhagen 2100, Denmark

Abstract

ABSTRACT The invasion suppressor protein, E-cadherin, plays a central role in epithelial cell-cell adhesion. Loss of E-cadherin expression or function in various tumors of epithelial origin is associated with a more invasive phenotype. In this study, by expressing a dominant-negative mutant of E-cadherin (Ec1WVM) in A431 cells, we demonstrated that specific inhibition of E-cadherin-dependent cell-cell adhesion led to the genetic reprogramming of tumor cells. In particular, prolonged inhibition of cell-cell adhesion activated expression of vimentin and repressed cytokeratins, suggesting that the effects of Ec1WVM can be classified as epithelial-mesenchymal transition. Both short-term and prolonged expression of Ec1WVM resulted in morphological transformation and increased cell migration though to different extents. Short-term expression of Ec1WVM up-regulated two AP-1 family members, c- jun and fra-1 , but was insufficient to induce complete mesenchymal transition. AP-1 activity induced by the short-term expression of Ec1WVM was required for transcriptional up-regulation of AP-1 family members and down-regulation of two other Ec1WVM-responsive genes, S100A4 and igfbp-3 . Using a dominant-negative mutant of c-Jun (TAM67) and RNA interference-mediated silencing of c-Jun and Fra-1, we demonstrated that AP-1 was required for cell motility stimulated by the expression of Ec1WVM. In contrast, Ec1WVM-mediated changes in cell morphology were AP-1-independent. Our data suggest that mesenchymal transition induced by prolonged functional inhibition of E-cadherin is a slow and gradual process. At the initial step of this process, Ec1WVM triggers a positive autoregulatory mechanism that increases AP-1 activity. Activated AP-1 in turn contributes to Ec1WVM-mediated effects on gene expression and tumor cell motility. These data provide novel insight into the tumor suppressor function of E-cadherin.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3