Formin-dependent TGF-β signaling for epithelial to mesenchymal transition

Author:

Rana Manish K.1,Aloisio Francesca M.1,Choi Changhoon2,Barber Diane L.1

Affiliation:

1. Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143

2. Department of Radiation Oncology, Samsung Medical Center, Seoul 06351, South Korea

Abstract

The role of distinct actin filament architectures in epithelial plasticity remains incompletely understood. We therefore determined roles for formins and the Arp2/3 complex, which are actin nucleators generating unbranched and branched actin filaments, respectively, in the process of epithelial to mesenchymal transition (EMT). In clonal lung, mammary, and renal epithelial cells, the formin activity inhibitor SMIFH2 but not the Arp2/3 complex activity inhibitor CK666 blocked EMT induced by TGF-β. SMIFH2 prevented the proximal signal of increased Smad2 phosphorylation and hence also blocked downstream EMT markers, including actin filament remodeling, decreased expression of the adherens junction protein E-cadherin, and increased expression of the matrix protein fibronectin and the transcription factor Snail. The short hairpin RNA silencing of formins DIAPH1 and DIAPH3 but not other formins phenocopied SMIFH2 effects and inhibited Smad2 phosphorylation and changes in Snail and cadherin expression. Formin activity was not necessary for the cell surface expression or dimerization of TGF-β receptors, or for nuclear translocation of TAZ, a transcription cofactor in Hippo signaling also regulated by TGF-β. Our findings reveal a previously unrecognized role for formin-dependent actin architectures in proximal TGF-β signaling that is necessary for Smad2 phosphorylation but not for cross-talk to TAZ.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3