Deficiencies in the Endoplasmic Reticulum (ER)-Membrane Protein Gab1p Perturb Transfer of Glycosylphosphatidylinositol to Proteins and Cause Perinuclear ER-associated Actin Bar Formation

Author:

Grimme Stephen J.1,Gao Xiang-Dong2,Martin Paul S.2,Tu Kim2,Tcheperegine Serguei E.2,Corrado Kathleen34,Farewell Anne E.35,Orlean Peter1,Bi Erfei2

Affiliation:

1. Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

2. Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104

3. Department of Biology, University of Michigan, Ann Arbor, Michigan 48109

4. Onondaga County Center for Forensic Sciences, Syracuse, New York 13210

5. Department of General and Marine Microbiology, Lundberg Laboratory, Göteborg University, S-405 30 Göteborg, Sweden

Abstract

The essential GAB1 gene, which encodes an endoplasmic reticulum (ER)-membrane protein, was identified in a screen for mutants defective in cellular morphogenesis. A temperature-sensitive gab1 mutant accumulates complete glycosylphosphatidylinositol (GPI) precursors, and its temperature sensitivity is suppressed differentially by overexpression of different subunits of the GPI transamidase, from strong suppression by Gpi8p and Gpi17p, to weak suppression by Gaa1p, and to no suppression by Gpi16p. In addition, both Gab1p and Gpi17p localize to the ER and are in the same protein complex in vivo. These findings suggest that Gab1p is a subunit of the GPI transamidase with distinct relationships to other subunits in the same complex. We also show that depletion of Gab1p or Gpi8p, but not Gpi17p, Gpi16p, or Gaa1p causes accumulation of cofilin-decorated actin bars that are closely associated with the perinuclear ER, which highlights a functional interaction between the ER network and the actin cytoskeleton.

Publisher

American Society for Cell Biology (ASCB)

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3