Data Mining Technologies in Solving Economic Problems

Author:

Ivanov Mikhail1ORCID,Sygotina Marina1ORCID,Nadrshin Vladimir2ORCID,Derbeneva Anzhelika1ORCID

Affiliation:

1. Bratsk State University

2. Irkutsk National Research Technical University

Abstract

Improving the efficiency of business process management is a complex and extremely important task, the solution of which is unthinkable without the use of advanced information systems and management decision technologies. The paper presents the results of research on data mining technologies using On-Line Transaction Processing and On-Line Analytical Processing methods. The study proposed a generalized hierarchical representation of data processing methodologies with integration of heterogeneous sources to management decision making. Data mining base methods are systematized: classification, regression, prediction, clustering, interdependence, visualization, deviation (anomaly) detection, estimation, and feature selection (engineering). We described the possibilities of using data mining in the field of information technology, marketing, trade, financial and insurance activities. The study examined data mining technologies in sport products business using the Microsoft® Excel® application and a special add-in of the Microsoft® SQL Server® relational database management system, capable of identifying implicit (hidden) factors that affect or, equally important, do not affect sales volumes.

Publisher

Baikal State University

Subject

General Medicine

Reference15 articles.

1. Ivanov M.Yu. Expert Systems for Economic Entity Activity Assessment. Problemy sotsial'no-ekonomicheskogo razvitiya Sibiri = Issues of Social-Economic Development of Siberia, 2012, no. 3, pp. 23–27. (In Russian). EDN: RTDVJP.

2. Alchinov A.I., Tavbulatova Z.K., Dudareva O.V., Ivanov M.Yu. Modern Approach to Enterprise Information Systems. Journal of Physics: Conference Series, 2020, vol. 1661, no. 1, art. 012164. DOI:10.1088/1742-6596/1661/1/012164.

3. Vakhrusheva M.Yu., Khaliev M.S.-U., Pokhomchikova E.O. Barclays’ Application of Information System in Manufacturing Process. Journal of Physics: Conference Series, 2021, vol. 2032, no. 1, art. 012129. DOI: 10.1088/1742-6596/2032/1/012129.

4. Malsagov B.S., Ivanov M.Yu., Natalevich L.F. Structural Features of Accounting Automation Application. Journal of Physics: Conference Series, 2021, vol. 2032, no. 1, art. 012128. DOI: 10.1088/1742-6596/2032/1/012128.

5. Gorbunov D.V., Nesterova S.I., Ramzaev V.M., Khaymоvich I.N., Chumak V.G. Management of Innovative Processes Development of Small Business in the Region Based on Intelligent Data Analysis (Big Data). Fundamental'nye issledovaniya = Fundamental Research, 2016, no. 4-2, pp. 381–386. (In Russian). EDN: VVYJQN.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3