Using clustering methods to analyze sales of auto parts at a truck service station

Author:

Evdokimova Svetlana1,Novikova Tatyana1,Novikov Arthur1

Affiliation:

1. Voronezh State University of Forestry and Technologies named after G.F. Morozov

Abstract

Clustering methods are widely used to divide goods into groups depending on sales volumes in order to build an optimal purchasing planning and inventory management strategy. Cluster analysis methods do not provide an unambiguous partition of the original set of objects, therefore, in the work, existing clustering methods were analyzed to study sales of auto parts at truck service stations. To solve the problem, the following methods were chosen: k-means, hierarchical agglomerative clustering and DBSCAN. Before using the k-means method, the elbow method found the optimal number of clusters. The DBSCAN method is based on object density and automatically determines the number of clusters. The initial data for cluster analysis was information on sales of spare parts at truck service stations for 3 years; clustering was applied to data by year. The DBSCAN algorithm showed unsatisfactory results, since most of the goods (86%) were identified in one cluster, while others contained units of goods. The k-means method gave the best partitioning result, each group has a different volume. The distribution of goods in clusters changes over three years, so managers should study the change in the affiliation of goods to one group or another. The obtained clustering results will help determine the real needs of spare parts at truck service stations and build an optimal procurement strategy.

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference32 articles.

1. Dyshin, O.A. The calculation of the spare parts in the auto-service enterprise on the base of real / O.A. Dyshin, N.A. Karimov // Demand. Engineering Science. – 2017. – Vol. 2, № 3. – 2017. – Pp. 78-84. – DOI: 10.11648/j.es.20170203.14., Dyshin, O.A. The calculation of the spare parts in the auto-service enterprise on the base of real / O.A. Dyshin, N.A. Karimov // Demand. Engineering Science. – 2017. – Vol. 2, № 3. – 2017. – Pp. 78-84. – DOI: 10.11648/j.es.20170203.14.

2. Евдокимова, С.А. Анализ товарного ассортимента запасных частей дилерского предприятия автомобильного сервиса с помощью алгоритма FP-Growth / С.А. Евдокимова, К.В. Фролов, А.И. Новиков // Моделирование систем и процессов. – 2022. – Т. 15, № 4. – С. 24-33. – DOI: 10.12737/2219-0767-2022-15-4-24-33., Evdokimova, S.A. Analiz tovarnogo assortimenta zapasnyh chastey dilerskogo predpriyatiya avtomobil'nogo servisa s pomosch'yu algoritma FP-Growth / S.A. Evdokimova, K.V. Frolov, A.I. Novikov // Modelirovanie sistem i processov. – 2022. – T. 15, № 4. – S. 24-33. – DOI: 10.12737/2219-0767-2022-15-4-24-33.

3. Ивахненко, А.А. Моделирование стратегий управления запасами автосервисного предприятия / А.А. Ивахненко, О.А. Иващук // Современные наукоемкие технологии. – 2022. – № 12-2. – С. 217-222. – DOI: 10.17513/snt.39462., Ivahnenko, A.A. Modelirovanie strategiy upravleniya zapasami avtoservisnogo predpriyatiya / A.A. Ivahnenko, O.A. Ivaschuk // Sovremennye naukoemkie tehnologii. – 2022. – № 12-2. – S. 217-222. – DOI: 10.17513/snt.39462.

4. Шиков, Н.Н. Модель управления запасами центра сервисного обслуживания / Н.Н. Шиков, Н.З. Бойко, Р.Н. Шиков // Экономический вестник Донбасского государственного технического института. – 2022. – № 13. – С. 57-65., Shikov, N.N. Model' upravleniya zapasami centra servisnogo obsluzhivaniya / N.N. Shikov, N.Z. Boyko, R.N. Shikov // Ekonomicheskiy vestnik Donbasskogo gosudarstvennogo tehnicheskogo instituta. – 2022. – № 13. – S. 57-65.

5. Using digital twins to create an inventory management system / V. Kukartsev [et al.] // E3S Web of Conferences. – 2023. – Vol. 431(1). – C. 05016. – DOI: 10.1051/e3sconf/202343105016., Using digital twins to create an inventory management system / V. Kukartsev [et al.] // E3S Web of Conferences. – 2023. – Vol. 431(1). – C. 05016. – DOI: 10.1051/e3sconf/202343105016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3