Developing an Echocardiography-Based, Automatic Deep Learning Framework for the Differentiation of Increased Left Ventricular Wall Thickness Etiologies

Author:

Banerjee Imon1ORCID,Li James1,Chao, Chieh-Ju2,Jeong Jiwoong Jason1,R Amith Seri1,Barry Timothy1,Neuman Hana1,Campany Megan1,Abdou Merna1,O’Shea Michael1,Smith Sean1,Abraham Bishoy1,Hosseini Seyedeh Maryam1,Wang Yuxiang1,Lester Steven1,Alsidawi Said1,Wilansky susan1,Steidley Eric1,Rosenthal Julie1,Ayoub Chadi1,Appleton Christopher1,Shen Win-Kuang1,Grogan Martha2,Kane Garvan2,Oh Jae2,Patel Bhavik N.1,Arsanjani Reza1

Affiliation:

1. Mayo Clinic Research in Arizona

2. Mayo Clinic Minnesota

Abstract

Aims Increased LV wall thickness is frequently encountered in transthoracic echocardiography (TTE). While accurate and early diagnosis is clinically important, given the differences in available therapeutic options and prognosis, an extensive workup is often required to establish the diagnosis. We propose the first echo-based, automated deep learning model with a fusion architecture to facilitate the evaluation and diagnosis of increased left ventricular (LV) wall thickness. Methods and Results Patients with an established diagnosis of increased LV wall thickness (hypertrophic cardiomyopathy (HCM), cardiac amyloidosis (CA), and hypertensive heart disease (HTN)/others) between 1/2015 to 11/2019 at Mayo Clinic Arizona were identified. The cohort was divided into 80%/10%/10% for training, validation, and testing sets, respectively. Six baseline TTE views were used to optimize a pre-trained InceptionResnetV2 model. Each model output was used to train a meta-learner under a fusion architecture. Model performance was assessed by multiclass area under the receiver operating characteristic curve (AUROC). A total of 586 patients were used for the final analysis (194 HCM, 201 CA, and 191 HTN/others). The mean age was 55.0 years, and 57.8% were male. Among the individual view-dependent models, the apical 4 chamber model had the best performance (AUROC: HCM: 0.94, CA: 0.73, and HTN/other: 0.87). The final fusion model outperformed all the view-dependent models (AUROC: CA: 0.90, HCM: 0.93, and HTN/other: 0.92). Conclusion The echo-based InceptionResnetV2 fusion model can accurately classify the main etiologies of increased LV wall thickness and can facilitate the process of diagnosis and workup.

Publisher

Authorea, Inc.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3