Echocardiography-Based Deep Learning Model to Differentiate Constrictive Pericarditis and Restrictive Cardiomyopathy

Author:

Chao Chieh-JuORCID,Jeong Jiwoong,Arsanjani Reza,Kim Kihong,Ayoub Chadi,Grogan Martha,Kane Garvan,Banerjee Imon,Oh Jae K

Abstract

AbstractBackgroundConstrictive pericarditis (CP) is an uncommon but reversible cause of diastolic heart failure if appropriately identified and treated. Although echocardiography can detect CP based on characteristic cardiac motion and Doppler findings, its diagnosis remains a challenge for clinicians. Artificial intelligence (AI) may enhance identification of CP. We proposed a deep learning approach based on transthoracic echocardiography (TTE) to differentiate CP from restrictive cardiomyopathy (RCM).MethodsPatients with a confirmed diagnosis of CP and cardiac amyloidosis (CA, as the representative disease of RCM) at Mayo Clinic Rochester from 1/2003-12/2021 were identified to extract baseline demographics and the apical 4 chamber (A4C) view from TTE studies. The cases were split into a 60:20:20 ratio for training, validation, and held-out test sets of the ResNet50 deep learning model. The model performance (differentiating CP and CA) was evaluated in the test set with the area under the curve (AUC). GradCAM was used for model interpretation.ResultsA total of 381 patients were identified, including 184 (48.3%) CP, and 197 (51.7%) CA cases. The mean age was 68.7±11.4, and 72.8% were male. ResNet50 had a performance with an AUC to differentiate the 2-class classification task (CP vs. CA, AUC 0.97). The GradCAM heatmap showed activation around the ventricular septal area.ConclusionWith a standard A4C view, our AI model provides a platform for the early and accurate detection of CP, allowing for improved workflow efficiency and prompt referral for more advanced evaluation and intervention of CP.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3