ANALISIS ALGORITMA K-MEDOIDS CLUSTERING DALAM PENGELOMPOKAN PENYEBARAN COVID-19 DI INDONESIA

Author:

Sindi Sukma,Ningse Weni Ratnasari Orktapia,Sihombing Irma Agustika,R.H.Zer Fikrul Ilmi,Hartama Dedy

Abstract

Abstract - At the beginning of March Indonesia was entering the corona outbreak virus (COVID) Every day the case of Covid-19 distribution in Indonesia continued to increase. the community is issued to conduct social distance to cut the distribution of COVID-19 distribution distributed in various regions. In Indonesia, therefore, the data that has been accommodated is certainly a lot, from the data it can be seen patterns - selection patterns of distribution of COVID-19 distribution are based on test scores, This study uses the K-Medoids method so that the distribution patterns of COVID-19 distribution can be used for the community. K-Medoids is a method of grouping Analytical sections that aim to get a set of k-clusters among the data that most require an object in the collection of data. The results of the new COVID-19 research grouping show the community produced from various regions in Indonesia. Characteristics with a body temperature above 36.9 ◦ c and with fever and cough resolution supported by one of the characteristics of COVID-19 symptoms.Kata Kunci -    K-Medoids Algorithm, Clustering, Data Mining, COVID-19, Data GroupingAbstrak - Pada awal maret Indonesia sedang di landa masuknya wabah  virus corona (covid) Setiap hari kasus penyebaran covid-19 di indonesia terus meningkat.  masyarakat diminta untuk melakukan  social distancing guna mamutus rantai penyebaran covid-19 yang tersebar diberbagai wilayah.di Indonesia.  Oleh karena itu, data yang telah ditampung pastinya banyak sekali, dari data tersebut dapat dilihat pola – pola penentuan pengelompokan penyebaran covid-19 dilakukan berdasarkan nilai tes, Penelitian ini menggunakan metode K-Medoids agar dapat diketahui pola pemilihan penentuan pengelompokan penyebaran covid-19 bagi masyarakat. K-Medoids merupakan metode Analitis partisional clustering yang bertujuan untuk mendapatkan suatu set k-cluster di antara data yang paling mendekati suatu objek dalam pengelmpokan suatu data.. Hasil penelitian pengelompokan penyebaran covid-19 baru menunjukkan bahwa masyarakat yang berasal dari berbagai wilayah di Indonesia. Cirri-ciri dengan suhu badan  di atas 36,9◦c dan dengan disertai demam dan batuk berkelanjutan menunjukkan salah satu ciri-ciri  gejalah covid-19Kata Kunci - Algoritma K-Medoids, Clustering, Data Mining,  Covid-19, Pengelompokan Data

Publisher

Universitas Asahan

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia;Hello World Jurnal Ilmu Komputer;2023-03-15

2. Analysis of the impact of COVID-19 on international public activities using C4.5 algorithm;THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System;2023

3. Comparison of K-means and K-medoids algorithm in grouping dengue fever patient data (Case study: Kaliasin health center);PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGY AND MULTIDISCIPLINE (ICATAM) 2021: “Advanced Technology and Multidisciplinary Prospective Towards Bright Future” Faculty of Advanced Technology and Multidiscipline;2023

4. Clustering of COVID-19 Vaccination Recipients in DKI Jakarta Using The K-Medoids Algorithm;2022 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS);2022-11-23

5. Application of K-Means Clustering Algorithm in Determining Prospective Students Receiving Foundation Scholarship;2021 International Conference on Computer Science and Engineering (IC2SE);2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3