Author:
Sindi Sukma,Ningse Weni Ratnasari Orktapia,Sihombing Irma Agustika,R.H.Zer Fikrul Ilmi,Hartama Dedy
Abstract
Abstract - At the beginning of March Indonesia was entering the corona outbreak virus (COVID) Every day the case of Covid-19 distribution in Indonesia continued to increase. the community is issued to conduct social distance to cut the distribution of COVID-19 distribution distributed in various regions. In Indonesia, therefore, the data that has been accommodated is certainly a lot, from the data it can be seen patterns - selection patterns of distribution of COVID-19 distribution are based on test scores, This study uses the K-Medoids method so that the distribution patterns of COVID-19 distribution can be used for the community. K-Medoids is a method of grouping Analytical sections that aim to get a set of k-clusters among the data that most require an object in the collection of data. The results of the new COVID-19 research grouping show the community produced from various regions in Indonesia. Characteristics with a body temperature above 36.9 ◦ c and with fever and cough resolution supported by one of the characteristics of COVID-19 symptoms.Kata Kunci - K-Medoids Algorithm, Clustering, Data Mining, COVID-19, Data GroupingAbstrak - Pada awal maret Indonesia sedang di landa masuknya wabah virus corona (covid) Setiap hari kasus penyebaran covid-19 di indonesia terus meningkat. masyarakat diminta untuk melakukan social distancing guna mamutus rantai penyebaran covid-19 yang tersebar diberbagai wilayah.di Indonesia. Oleh karena itu, data yang telah ditampung pastinya banyak sekali, dari data tersebut dapat dilihat pola – pola penentuan pengelompokan penyebaran covid-19 dilakukan berdasarkan nilai tes, Penelitian ini menggunakan metode K-Medoids agar dapat diketahui pola pemilihan penentuan pengelompokan penyebaran covid-19 bagi masyarakat. K-Medoids merupakan metode Analitis partisional clustering yang bertujuan untuk mendapatkan suatu set k-cluster di antara data yang paling mendekati suatu objek dalam pengelmpokan suatu data.. Hasil penelitian pengelompokan penyebaran covid-19 baru menunjukkan bahwa masyarakat yang berasal dari berbagai wilayah di Indonesia. Cirri-ciri dengan suhu badan di atas 36,9◦c dan dengan disertai demam dan batuk berkelanjutan menunjukkan salah satu ciri-ciri gejalah covid-19Kata Kunci - Algoritma K-Medoids, Clustering, Data Mining, Covid-19, Pengelompokan Data
Subject
General Earth and Planetary Sciences,General Environmental Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Implementasi Algoritma K-Means pada Kasus Kekerasan Anak dan Perempuan Berdasarkan Usia;Hello World Jurnal Ilmu Komputer;2023-03-15
2. Analysis of the impact of COVID-19 on international public activities using C4.5 algorithm;THE 6TH INTERNATIONAL CONFERENCE ON ENERGY, ENVIRONMENT, EPIDEMIOLOGY AND INFORMATION SYSTEM (ICENIS) 2021: Topic of Energy, Environment, Epidemiology, and Information System;2023
3. Comparison of K-means and K-medoids algorithm in grouping dengue fever patient data (Case study: Kaliasin health center);PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGY AND MULTIDISCIPLINE (ICATAM) 2021: “Advanced Technology and Multidisciplinary Prospective Towards Bright Future” Faculty of Advanced Technology and Multidiscipline;2023
4. Clustering of COVID-19 Vaccination Recipients in DKI Jakarta Using The K-Medoids Algorithm;2022 International Conference Advancement in Data Science, E-learning and Information Systems (ICADEIS);2022-11-23
5. Application of K-Means Clustering Algorithm in Determining Prospective Students Receiving Foundation Scholarship;2021 International Conference on Computer Science and Engineering (IC2SE);2021-11-16