Automatic determination of phase transition points in in situ X-ray powder diffraction experiments

Author:

Rajiv P.,Dinnebier R. E.,Jansen M.

Abstract

Powder diffraction experiments performed as a function of external variables like, e.g., temperature, pressure, or time open possibilities to gain additional information about the physical and chemical properties of the system under study. Sensible extraction of such information directly from in situ experiments requires the treatment of the dataset with methods like sequential and/or parametric refinements. We are progressing towards the development of the parametric refinement method, which performs simultaneous phase refinements of in situ powder patterns by imposing several rational physical models of the evolving parameters on the calculated powder diffraction profiles. One of the fundamental prerequisites for this method is that the powder patterns in the in situ dataset be grouped to their relevant phases. In this paper, we present an analytical method which uses the Pearson’s correlations coefficients of the powder patterns to automatically determine the phase transition points of the in situ powder dataset. The phase transition points determined are used to group the powder patterns belonging to identical phases and to prepare the patterns for automated sequential phase refinements. The proposed algorithm is implemented as an automated module in the multi powder diffraction pattern, data reduction software Powder 3D.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3