Low frequency attenuation of acoustic waves in a perforated pipe

Author:

Dell A.1,Krynkin A.1,Horoshenkov K. V.1,Sailor G.1

Affiliation:

1. Department of Mechanical Engineering, The University of Sheffield , Sheffield, S1 3JD, United Kingdom

Abstract

This paper presents new experimental and numerical evidence that perforations in a pipe wall result in a low-frequency bandgap within which sound waves rapidly attenuate. These perforations are modelled as an acoustically soft boundary condition on the pipe wall and show that a low frequency bandgap is created from 0 Hz. The upper bound of this bandgap is determined by the dimensions and separation of the perforations. An analytical model based on the transfer matrix method is proposed. This model is validated against numerical predictions for the pipe with varying perforation geometries. A numerical study is undertaken to model the effect of perforations with ideal acoustically soft boundary conditions and surrounded with an air gap. Close agreement is found between the numerical and analytical models. Experimental evidence shows that the width of the bandgap is accurately predicted with the numerical and analytical models.

Funder

Engineering and Physical Sciences Research Council

UKCRIC-National Distributed Water Infrastructure Facility

European Regional Development Fund

Innovate UK

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference17 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3