Experimental demonstration of rainbow trapping of elastic waves in two-dimensional axisymmetric phononic crystal plates

Author:

Ellouzi Chadi1,Zabihi Ali1,Gormley Louis1,Aghdasi Farhood1,Stojanoska Katerina1,Miri Amir2ORCID,Jha Ratneshwar1ORCID,Shen Chen1ORCID

Affiliation:

1. Department of Mechanical Engineering, Rowan University 1 , Glassboro, New Jersey 08028, USA

2. Department of Biomedical Engineering, New Jersey Institute of Technology 2 , Newark, New Jersey 07102, USA

Abstract

Structures with specific graded geometries or properties can cause spatial separation and local field enhancement of wave energy. This phenomenon is called rainbow trapping, which manifests itself as stopping the propagation of waves at different locations according to their frequencies. In acoustics, most research on rainbow trapping has focused on wave propagation in one dimension. This research examined the elastic wave trapping performance of a two-dimensional (2D) axisymmetric grooved phononic crystal plate structure. The performance of the proposed structure is validated using numerical simulations based on finite element analysis and experimental measurements using a laser Doppler vibrometer. It is found that rainbow trapping within the frequency range of 165–205 kHz is achieved, where elastic waves are trapped at different radial distances in the plate. The results demonstrate that the proposed design is capable of effectively capturing elastic waves across a broad frequency range of interest. This concept could be useful in applications such as filtering and energy harvesting by concentrating wave energy at different locations in the structure.

Funder

National Science Foundation

New Jersey Economic Development Authority

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3