Experimental investigation of multimodal noise generation by ducted low Mach number flows through orifice plates

Author:

Quaroni Luca Nicola1ORCID,Rampnoux Simon2,Ramadan Islam2ORCID,Malavasi Stefano1ORCID,Perrey-Debain Emmanuel2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza Leonardo da Vinci, Milan 20133, Italy

2. Laboratoire Roberval, Université de technologie de Compiègne, Centre de recherche Royallieu, CS 60 319, Compiègne Cedex, 60 203, France

Abstract

Noise generation by low Mach number air flows through circular orifices in rectangular ducts is investigated. In particular, the influence of the number and position of the orifices maintaining a constant flow area is addressed. A review of the available theories suggests a certain importance of such parameters in the excitation of higher-order acoustic duct modes. A qualitative coefficient is proposed for a first characterization of the ability to enhance or lessen a given higher-order acoustic mode by the plate geometry. An experimental campaign is performed to measure the total emitted acoustic power by different plate geometries as well as its modal composition. It is found that the orifices' numbers and positions greatly influence the acoustic emissions while the flow pressure drop caused by the obstacles is similar. The proposed qualitative coefficient shows good agreement with the experimental results. A particle image velocimetry measurement campaign is performed to visualize the near-field average flow behavior upstream and downstream of the orifice plates. An increase in the turbulent velocity fluctuations in the vicinity of the orifices is observed on both sides, further validating previous studies on the subject.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3