A multi-port scattering matrix formalism for the acoustic prediction in duct networks

Author:

Calmettes CyrilORCID,Perrey-Debain EmmanuelORCID,Lefrançois Emmanuel,Caillet Julien

Abstract

Duct acoustic network modeling is commonly carried out using the transfer matrix formalism which is limited to the low frequency range. The aim of this work is to extend it to higher frequencies by taking into account the multi-mode acoustic propagation. The first step is to compute, via Finite Element Method (FEM), the multi-port multi-modal scattering matrix of each element. The second step is to transform it into a scattering matrix for the acoustic power, relying on assumptions which are often used for the study of medium-to-high frequency broadband noise. The method is applied to typical elements such as expansion chamber mufflers and air conditioning veins. In all cases, the power-flow model is compared to the FEM solution in terms of Transmission Losses. It is concluded that this simplified model is a reliable tool for the analysis of complex networks encountered in Heat and Ventilation Air Conditioning (HVAC) duct networks.

Funder

Airbus

ANRT

Publisher

EDP Sciences

Subject

Electrical and Electronic Engineering,Speech and Hearing,Computer Science Applications,Acoustics and Ultrasonics

Reference23 articles.

1. Sengissen A., Caruelle B., Souchotte P., Jondeau E., Poinsot T.: LES of noise induced by flow through a double diaphragm system. In: 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), Miami, Florida, 11–13 May 2009. https://doi.org/10.2514/6.2009-3357.

2. Kuehnelt H., Haumer A., Bäuml T., Reisenbichler U., Reichl C., Karlowatz G.: Flow-acoustic concept modelling of HVAC duct networks using a dymola/modelica frame work. In: The 16th International Congress on Sound and Vibration (ICSV16), Kraków, 5–9 July, 2009.

3. Modeling of duct acoustics in the high frequency range using two-ports

4. A GENERAL FORMALISM FOR ANALYZING ACOUSTIC 2-PORT NETWORKS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3