Data-driven decomposition of crowd noise from indoor sporting events

Author:

Cutler Mitchell C.1ORCID,Cook Mylan R.1,Transtrum Mark K.1,Gee Kent L.1ORCID

Affiliation:

1. Department of Physics and Astronomy, Brigham Young University , Provo, Utah 84602, USA

Abstract

Separating crowd responses from raw acoustic signals at sporting events is challenging because recordings contain complex combinations of acoustic sources, including crowd noise, music, individual voices, and public address (PA) systems. This paper presents a data-driven decomposition of recordings of 30 collegiate sporting events. The decomposition uses machine-learning methods to find three principal spectral shapes that separate various acoustic sources. First, the distributions of recorded one-half-second equivalent continuous sound levels from men's and women's basketball and volleyball games are analyzed with regard to crowd size and venue. Using 24 one-third-octave bands between 50 Hz and 10 kHz, spectrograms from each type of game are then analyzed. Based on principal component analysis, 87.5% of the spectral variation in the signals can be represented with three principal components, regardless of sport, venue, or crowd composition. Using the resulting three-dimensional component coefficient representation, a Gaussian mixture model clustering analysis finds nine different clusters. These clusters separate audibly distinct signals and represent various combinations of acoustic sources, including crowd noise, music, individual voices, and the PA system.

Publisher

Acoustical Society of America (ASA)

Reference24 articles.

1. Analyzing the sentiment of crowd for improving the emergency response services,2018

2. An integrated approach to crowd psychology and public order policing;Policing,2004

3. Being in a crowd bonds people via physiological synchrony;Sci. Rep.,2022

4. Classifying crowd behavior at collegiate basketball games using acoustic data;Proc. Mtgs. Acoust.,2018

5. Fusion of spectral and time domain features for crowd noise classification system,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3