Machine learning per la separazione e la misura di sorgenti sonore coesistenti in spazi chiusi

Author:

De Salvio Domenico

Abstract

La crescente potenza di calcolo e capacità di immagazzinamento dati della strumentazione acustica fa sì che si ponga sempre più attenzione verso i monitoraggi a lungo termine. Questa grande quantità di dati spiana la strada all'utilizzo di tecniche di machine learning. L'utilizzo di algoritmi sofisticati, principalmente basati su assunzioni statistiche, permette di ampliare le capacità di analisi dei tecnici acustici di contesti complessi. Il presente lavoro vuole proporre un metodo basato su tecniche di machine learning per separare, identificare e misurare diverse sorgenti sonore coesistenti in scenari reali monitorati tramite un fonometro. Sono presentati quattro casi studio in cui il metodo proposto è stato applicato. Due casi studio riguardano il monitoraggio di lezioni universitarie per separare il parlato dell'insegnante dal chiacchiericcio degli studenti. Questo permette di misurare il grado di attenzione degli studenti durante le lezioni. Altri due casi studio invece riguardano il monitoraggio di due uffici con più postazioni lavorative in cui sono state separate le sorgenti di rumore dal parlato dei lavoratori.

Publisher

Franco Angeli

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3