Ultrasound characterization of bioinspired functionally graded soft-to-hard composites: Experiment and modeling

Author:

Aghaei Ali1,Bochud Nicolas1,Rosi Giuseppe1,Grossman Quentin2,Ruffoni Davide2,Naili Salah1

Affiliation:

1. Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, UMR 8208, MSME, F-94010 Créteil, France

2. Mechanics of Biological and Bioinspired Materials Laboratory, Department of Aerospace and Mechanical Engineering, University of Liège, Quartier Polytech 1, Allée de la Découverte 9, B-4000 Liège, Belgium

Abstract

Functional grading is a distinctive feature adopted by nature to improve the transition between tissues that present a strong mismatch in mechanical properties, a relevant example being the tendon-to-bone attachment. Recent progress in multi-material additive manufacturing now allows for the design and fabrication of bioinspired functionally graded soft-to-hard composites. Nevertheless, this emerging technology depends on several design variables, including both material and mechanistic ingredients, that are likely to affect the mechanical performance of such composites. In this paper, a model-based approach is developed to describe the interaction of ultrasound waves with homogeneous and heterogeneous additively manufactured samples, which respectively display a variation either of the material ingredients (e.g., ratio of the elementary constituents) or of their spatial arrangement (e.g., functional gradients, damage). Measurements are performed using longitudinal bulk waves, which are launched and detected using a linear transducer array. First, model is calibrated by exploiting the signals measured on the homogeneous samples, which allow identifying relationships between the model parameters and the material composition. Second, the model is validated by comparing the signals measured on the heterogeneous samples with those predicted numerically. Overall, the reported results pave the way for characterizing and optimizing multi-material systems that display complex bioinspired features.

Funder

CNRS-INSIS

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3