A comparative analysis of form and function in Centrarchidae hearing ability: Does otolith variation affect auditory responsiveness?

Author:

Bendig Taylor A.1,Dycha Grace M.1,Bull Elise M.1,Ayala-Osorio Roselia1,Higgs Dennis M.1ORCID

Affiliation:

1. Integrative Biology, Faculty of Science, University of Windsor , Windsor, Ontario N9B 3P4, Canada

Abstract

There exists a wealth of knowledge on hearing ability in individual fish species, but the role of interspecific variation, and drivers behind it, remains understudied, making it difficult to understand evolutionary drivers. The current study quantified hearing thresholds for three species of sunfish in the family Centrarchidae [bluegill sunfish (Lepomis macrochirus), pumpkinseed sunfish (Lepomis gibbosus), and rock bass (Ambloplites rupestris)] using auditory evoked potentials and behavioral trials and saccular otolith size and hair cell density. In auditory physiological experiments, 10-ms tone bursts were played and responses monitored to measure hearing. In behavioral experiments, fish were exposed to the same tone bursts for 1 s, and changes in fish behaviors were monitored. Saccular otolith morphology and hair cell densities were also quantified. Physiological thresholds varied between species, but behavioral thresholds did not. Rock bass had larger S:O ratio (percentage of the saccular otolith surface occupied by the sulcus), but no differences in hair cell densities were found. Our study allows for a direct comparison between confamilial species, allowing a deeper understanding of sound detection abilities and possible mechanisms driving differential hearing. Using both approaches also allows future research into how these species may be impacted by increasing levels of anthropogenic noise.

Funder

Natural sciences and engineering research council

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3