Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats?

Author:

Amoser Sonja1,Ladich Friedrich1

Affiliation:

1. University of Vienna, Department of Neurobiology and Behavior,Althanstrasse 14, 1090 Vienna, Austria

Abstract

SUMMARYSeveral groups of fishes, among them two thirds of all freshwater fishes,have developed hearing specializations that enhance auditory sensitivity and broaden frequency ranges compared with hearing non-specialists (generalists),which lack such adaptations. It has been speculated that the enhanced sensitivities of these so-called hearing specialists have evolved in quiet habitats such as lakes, backwaters of rivers, slowly flowing streams or the deep sea. To test this hypothesis, noise levels and frequency spectra of four different freshwater habitats near Vienna, Austria (Danube River, Triesting stream, Lake Neusiedl, backwaters of the Danube River), were recorded and played back to native fish species while simultaneously measuring their auditory thresholds using the auditory evoked potential (AEP) recording technique. As a representative of hearing specialists, we chose the common carp (Cyprinus carpio, Cyprinidae) and for the hearing generalists the European perch (Perca fluviatilis, Percidae). Data show that the carp's hearing is only moderately masked by the quiet habitat noise level of standing waters (mean threshold shift 9 dB) but is heavily affected by stream and river noise by up to 49 dB in its best hearing range (0.5-1.0 kHz). In contrast, the perch's hearing thresholds were only slightly affected (mean up to 12 dB, at 0.1 kHz) by the highest noise levels presented. Our results indicate that hearing abilities of specialists such as carp are well adapted to the lowest noise levels encountered in freshwater habitats and that their hearing is considerably masked in some parts of their distribution range. Hearing in non-specialists such as perch, on the other hand, is only slightly or not at all impaired in all habitats.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3