Impacts of infauna, worm tubes, and shell hash on sediment acoustic variability and deviation from the viscous grain shearing model

Author:

Lee Kevin M.1ORCID,Venegas Gabriel R.2ORCID,Ballard Megan S.1ORCID,Dorgan Kelly M.3ORCID,Kiskaddon Erin3ORCID,McNeese Andrew R.1ORCID,Wilson Preston S.4ORCID

Affiliation:

1. Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713, USA

2. Center for Acoustics Research and Education, University of New Hampshire, Durham, New Hampshire 03824, USA

3. Dauphin Island Sea Lab, Dauphin Island, Alabama 36528, USA

4. Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA

Abstract

Infauna influence geoacoustic parameters in surficial marine sediments. To investigate these effects, an experiment was conducted in natural sand-silt sediment in the northern Gulf of Mexico. In situ acoustic measurements of sediment sound speed, attenuation, and shear speed were performed, and sediment cores were collected from the upper 20 cm of the seabed. Laboratory measurements of sound speed and attenuation in the cores were conducted, after which the core contents were analyzed for biological and physical properties. Since no model currently accounts for the effects of infauna, a deviation from model predictions is expected. To assess the extent of this, acoustic measurements were compared with the viscous grain shearing model from Buckingham [J. Acoust. Soc. Am. 122, 1486 (2007); J. Acoust. Soc. Am. 148, 962 (2020)], for which depth-dependent profiles of sediment porosity and mean grain size measured from the cores were used as input parameters. Comparison of acoustic results with distributions of infauna, worm tubes, and shell hash suggests biogenic impacts on acoustic variability and model accuracy are important in surficial marine sediments. The presence of infauna and worm tubes were correlated with higher variability in both sound speed and attenuation and greater deviation from the model near the sediment-water interface.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3