Under-ice acoustic navigation using real-time model-aided range estimation

Author:

Bhatt EeShan C.1ORCID,Viquez Oscar1ORCID,Schmidt Henrik1

Affiliation:

1. Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

Abstract

The long baseline (LBL) underwater navigation paradigm relies on the conversion of travel times into pseudoranges to trilaterate position. For real-time autonomous underwater vehicle (AUV) operations, this conversion assumes an isovelocity sound speed. For re-navigation, computationally and/or labor-intensive acoustic modeling may be employed to reduce uncertainty. This work demonstrates a real-time ray-based prediction of the effective sound speed along a path from source to receiver. This method was implemented for an AUV-LBL system in the Beaufort Sea in an ice-covered and a double-ducted propagation environment. Given the lack of Global Navigation Satellite Systems (GNSS) data throughout the vehicle's mission, the pseudorange performance is first evaluated on acoustic transmissions between GNSS-linked beacons. The mean real-time absolute range error between beacons is roughly 11 m at distances up to 3 km. A consistent overestimation in the real-time method provides insights for improved eigenray filtering by the number of bounces. An operationally equivalent pipeline is used to reposition the LBL beacons and re-navigate the AUV, using modeled, historical, and locally observed sound speed profiles. The best re-navigation error is 1.84 ± 2.19 m root mean square. The improved performance suggests that this approach extends the single meter accuracy of the deployed GNSS units into the water column.

Funder

Office of Naval Research

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference65 articles.

1. Temporal and spatial dependence of a yearlong record of sound propagation from the Canada Basin to the Chukchi Shelf

2. Scientific Challenges and Present Capabilities in Underwater Robotic Vehicle Design and Navigation for Oceanographic Exploration Under-Ice

3. Nested autonomy for unmanned marine vehicles with MOOS-IvP

4. Bhatt, E. C. (2021). “ A virtual ocean framework for environmentally adaptive, embedded acoustic navigation on autonomous underwater vehicles,” Ph.D. thesis, Massachusetts Institute of Technology and WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3