A high-precision localization method for underwater targets incorporating direct path recognition and sound rays bending compensation

Author:

Ji Meiqi1,Cui Xuerong12ORCID,Li Juan3,Jiang Bin1,Li Lei1,Li Shibao1,Liu Jianhang3

Affiliation:

1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao, China

2. Technology Innovation Center for Maritime Silk Road Marine Resources and Environment Networked Observation, Ministry of Natural Resources, Qingdao, China

3. College of Computer Science and Technology, China University of Petroleum (East China), Qingdao, China

Abstract

Underwater target localization technology plays a vital role in the development and utilization of marine resources. Due to the multipath effect in the hydroacoustic channel, the received signal is the superposition of a series of direct and reflected acoustic paths, making it challenging to accurately identify the direct path using existing methods. To address this issue, this paper proposes a high-precision direct path recognition method based on Light Gradient Boosting Machine (LightGBM), which utilizes the amplitude, Time of Arrival (TOA), reception angle, and phase of the received pulse as input features. Meanwhile, the direct linear conversion of acoustic wave propagation time from transmitter to receiver into a distance value, as commonly observed in radio ranging in air, is not feasible. Consequently, a method based on Effective Sound Velocity (ESV) is introduced to compensate for the bending of sound rays. By utilizing the recognized direct path delay value and the sound velocity value after compensating for sound ray bending, we can calculate the precise position of underwater targets. Experimental results validate the effectiveness of the proposed method in significantly improving the accuracy of underwater target localization.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3