The effects of vocal tract constrictions on aerodynamic measures in a synthetic vocal fold model

Author:

May Nicholas A.1,Scherer Ronald C.2ORCID

Affiliation:

1. The University of Maine 1 , Orono, Maine 04469, USA

2. Bowling Green State University 2 , Bowling Green, Ohio 43404, USA

Abstract

According to nonlinear source-filter theory, as the strength of the coupling between the source and filter increases, typically by a decrease in the vocal tract cross-sectional area, the resultant increase in the inertance of the vocal tract yields an increase in the interactions between acoustic pressures within the vocal tract and the changing glottal airflow and/or the vibratory pattern of the vocal folds as noted in Titze [(2008). J. Acoust. Soc. Am. 123(4), 1902–1915]. The purpose of the current research was to examine the effects of parametric vocal tract constrictions mimicking epilaryngeal tube and lip narrowing on aerodynamic measures in a dynamic self-oscillating physical model of the vocal folds and vocal tract. Multilayered silicone vocal fold models were created based on Murray and Thomson [(2011). J. Visualized Exp. 58, e3498] and Murray and Thomson [(2012). J. Acoust. Soc. Am. 132(5), 3428–3438] and mounted to a simple synthetic trachea and supraglottal vocal tract model. Four constriction cross-sectional areas were examined at two locations (i.e., at the epilarynx and lip regions). Phonation threshold pressure and flow were measured at phonation onset and offset using four M5-CONV vocal fold models. Results indicated that both constriction magnitude and location are relevant factors in determining glottal aerodynamics. In general, a narrow epilarynx tube or lip constriction resulted in the lowest onset pressures and airflows while the no vocal tract condition resulted in the highest onset pressures and airflows.

Publisher

Acoustical Society of America (ASA)

Subject

Acoustics and Ultrasonics,Arts and Humanities (miscellaneous)

Reference74 articles.

1. Effects of false vocal fold width on translaryngeal flow resistance,2004

2. The flow and pressure relationships in different tubes commonly used for semi-occluded vocal tract exercises;J. Voice,2016

3. Baer, T. (1975). “ Investigation of phonation using excised larynxes,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA.

4. Influence of a constriction in the near field of the vocal folds: Physical modeling and experimental validation;J. Acoust. Soc. Am.,2008

5. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics;J. Acoust. Soc. Am.,2006

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthetic, self-oscillating vocal fold models for voice production research;The Journal of the Acoustical Society of America;2024-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3