Synthetic, self-oscillating vocal fold models for voice production research

Author:

Thomson Scott L.1

Affiliation:

1. Department of Mechanical and Civil Engineering, Brigham Young University-Idaho , Rexburg, Idaho 83460, USA

Abstract

Sound for the human voice is produced by vocal fold flow-induced vibration and involves a complex coupling between flow dynamics, tissue motion, and acoustics. Over the past three decades, synthetic, self-oscillating vocal fold models have played an increasingly important role in the study of these complex physical interactions. In particular, two types of models have been established: “membranous” vocal fold models, such as a water-filled latex tube, and “elastic solid” models, such as ultrasoft silicone formed into a vocal fold-like shape and in some cases with multiple layers of differing stiffness to mimic the human vocal fold tissue structure. In this review, the designs, capabilities, and limitations of these two types of models are presented. Considerations unique to the implementation of elastic solid models, including fabrication processes and materials, are discussed. Applications in which these models have been used to study the underlying mechanical principles that govern phonation are surveyed, and experimental techniques and configurations are reviewed. Finally, recommendations for continued development of these models for even more lifelike response and clinical relevance are summarized.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Acoustical Society of America (ASA)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3