Positive effects of Moringa oleifera and Moringa stenopetala seed and leaf extracts against selected bacteria

Author:

Miller Grace,Necessary Kaley,Burchell Robert,Iwase Yui,Lautensack Nicole,Russell Blake,Holder Erik,Knee Emma,Sattley Matthew

Abstract

Moringa oleifera is hailed as the “miracle tree” for its impressive catalog of nutritional, medicinal, and water purification benefits. A (sub)tropical plant with a rapid growth rate (3–5 m in a single season), Moringa has proven beneficial in multiple ways in developing regions around the world. In addition to its high nutrient content and water clarifying properties, Moringa seed and leaf extracts have shown potential as natural antibacterial agents. Based on this, we anticipated that extracts from multiple species of Moringa would exhibit potentially useful antibacterial properties against a range of bacterial species. To explore this, both disk diffusion and minimum inhibitory concentration (MIC) culture techniques were employed to assess the inhibitory effects of seed and leaf extracts from M. oleifera and M. stenopetala against species of bacteria commonly used in research and teaching laboratories. Aqueous seed extracts from both Moringa species showed broad-spectrum activity but were especially effective at inhibiting the growth of Gram-positive bacteria, including species of Staphylococcus, Streptococcus, and Bacillus. Moringa leaf extracts also exhibited antibacterial activity, with ethanolic leaf extracts showing greater efficacy than aqueous leaf extracts in disk-diffusion assays. Temporary acidification (1 h at pH 2) of Moringa seed and leaf extracts had a detrimental effect on their antibacterial activity. MIC assays using Moringa leaf extracts also showed more pronounced inhibition of Gram-positive bacteria (MIC = 12.5% v/v) versus Gram-negative species (MIC = 25% v/v). These results are of particular relevance in tropical areas where pharmaceutical drugs are scarce but Moringa is widely available and often used as a nutritional supplement. Moreover, the rising threat of multi-drug resistant pathogens lends greater importance to the study of antibacterial plant products that ultimately may find application in the clinical setting.

Publisher

Ball State University Libraries

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3