An REA Ontology-Based Model for Mapping Big Data to Accounting Information Systems Elements

Author:

Murthy Uday S.1,Geerts Guido L.2

Affiliation:

1. University of South Florida

2. University of Delaware

Abstract

ABSTRACT The term “Big Data” refers to massive volumes of data that grow at an increasing rate and encompass complex data types such as audio and video. While the applications of Big Data and analytic techniques for business purposes have received considerable attention, it is less clear how external sources of Big Data relate to the transaction processing-oriented world of accounting information systems. This paper uses the Resource-Event-Agent Enterprise Ontology (REA) (McCarthy 1982; International Standards Organization [ISO] 2007) to model the implications of external Big Data sources on business transactions. The five-phase REA-based specification of a business transaction as defined in ISO (2007) is used to formally define associations between specific Big Data elements and business transactions. Using Big Data technologies such as Apache Hadoop and MapReduce, a number of information extraction patterns are specified for extracting business transaction-related information from Big Data. We also present a number of analytics patterns to demonstrate how decision making in accounting can benefit from integrating specific external Big Data sources and conventional transactional data. The model and techniques presented in this paper can be used by organizations to formalize the associations between external Big Data elements in their environment and their accounting information artifacts, to build architectures that extract information from external Big Data sources for use in an accounting context, and to leverage the power of analytics for more effective decision making.

Publisher

American Accounting Association

Subject

Management of Technology and Innovation,Information Systems and Management,Human-Computer Interaction,Accounting,Information Systems,Software,Management Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3