An Experimental and Simulation Study of Early Flame Development in a Homogeneous-charge Spark-Ignition Engine

Author:

Shekhawat Y.,Haworth D.C.,d'Adamo A.,Berni F.,Fontanesi S.,Schiffmann P.,Reuss D.L.,Sick V.

Abstract

An integrated experimental and Large-Eddy Simulation (LES) study is presented for homogeneous premixed combustion in a spark-ignition engine. The engine is a single-cylinder two-valve optical research engine with transparent liner and piston: the Transparent Combustion Chamber (TCC) engine. This is a relatively simple, open engine configuration that can be used for LES model development and validation by other research groups. Pressure-based combustion analysis, optical diagnostics and LES have been combined to generate new physical insight into the early stages of combustion. The emphasis has been on developing strategies for making quantitative comparisons between high-speed/high-resolution optical diagnostics and LES using common metrics for both the experiments and the simulations, and focusing on the important early flame development period. Results from two different LES turbulent combustion models are presented, using the same numerical methods and computational mesh. Both models yield Cycle-to-Cycle Variations (CCV) in combustion that are higher than what is observed in the experiments. The results reveal strengths and limitations of the experimental diagnostics and the LES models, and suggest directions for future diagnostic and simulation efforts. In particular, it has been observed that flame development between the times corresponding to the laminar-to-turbulent transition and 1% mass-burned fraction are especially important in establishing the subsequent combustion event for each cycle. This suggests a range of temporal and spatial scales over which future experimental and simulation efforts should focus.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference35 articles.

1. Ozdor N., Dulger M., Sher E. (1994) Cyclic variability in spark ignition engines: a literature survey, SAE Technical Paper 940987.

2. Johansson B. (1996) Cycle to cycle variations in S.I. engines − the effects of fluid flow and gas composition in the vicinity of the spark plug on early combustion, SAE Technical Paper 962084.

3. Pajot O. (2000) Etude expérimentale de l'influence de l'aérodynamique sur le comportement et la structure du front de flamme dans les conditions d'un moteur à allumage commandé, Thèse, University of Orléans, Orléans, France.

4. Ayala F.A., Heywood J.B. (2007) Lean SI engines: the role of combustion variability in defining lean limits, SAE Technical Paper 2007-24-0030.

5. Lacour C., Pera C. (2011) An experimental database dedicated to the study and modelling of cyclic variability in spark-ignition engines with LES, SAE Technical Paper 2011-01-1282.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3