Numerical investigation on the effect of boundary conditions on the scaling of spontaneous imbibition

Author:

Abd Abdul Salam,Alyafei Nayef

Abstract

We present a numerical validation of the scaling group presented by Schmid and Geiger ((2012) Water Resour. Res. 48, 3) for Spontaneous Imbibition (SI) through simulating a core sample bounded by the wetting fluid. We combine the results of the simulations with the semi-analytical model for counter-current spontaneous imbibition presented by Schmid et al. ((2011) Water Resour. Res. 47, 2) to validate the upscaling of laboratory experiments to field dimensions using dimensionless time. We then present a detailed parametric study on the effect of Boundary Conditions (BC) and characteristic length to compare imbibition assisted oil recovery with several types of boundary conditions. We demonstrate that oil recovery was the fastest and most efficient when all faces are open to flow. We also demonstrate that all cases scale with the non-dimensionless time suggested by Schmid and Geiger ((2012) Water Resour. Res. 48, 3) and show a close match to the numerical simulation and the semi-analytical solution. Moreover, we discuss how the effect of constructing a model with varying grid sizes and dimensions affects the accuracy of the results through comparing the results of the 2-D and 3-D models. We observe that the 3-D model proved superior in the accuracy of the results to simulate simple counter-current SI. However, we deduce that 2-D models yield satisfying enough results in a timely manner in the One End Open (OEO) and Two Ends Open (TEO) cases, compared to 3-D models which are time-consuming. We finally conclude that the non-dimensionless time of Schmid and Geiger ((2012) Water Resour. Res. 48, 3) works well with counter-current SI cases regardless of the boundary condition imposed on the core.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3