Wettability Literature Survey- Part 2: Wettability Measurement

Author:

Anderson William1

Affiliation:

1. Conoco Inc.

Abstract

Summary Many methods have been used to measure wettability. This paper describes the three quantitative methods in use today: contact angle, Amott method, and the U.S. Bureau of Mines (USBM) method. The advantages and limitations of all the qualitative methods-imbibition, microscope examination, flotation, glass slide, relative permeability curves, capillary pressure curves, capillarimetric method, displacement capillary pressure, permeability/saturation relationships, and reservoir logs-are pressure, permeability/saturation relationships, and reservoir logs-are covered. Nuclear magnetic resonance (NMR) and dye adsorption, two methods for measuring fractional wettability, are also discussed. Finally, a method is proposed to determine whether a core has mixed wettability. Introduction This paper is the second in a series of literature surveys covering the effects of wettability on core analysis. Changes in the wettability of cores have been shown to affect electrical properties, capillary pressure, waterflood behavior, relative permeability, dispersion, and simulated EOR. For core analysis to predict the behavior of the reservoir, the wettability of the core must be the same as the wettability of the undisturbed reservoir rock. When a drop of water is placed on a surface immersed in oil, a contact angle is formed that ranges from 0 to 180 deg. [0 to 3.14 rad]. A typical oil/water/solid system is shown in Fig. 1, where the surface energies in the system are related by Young's equation, (1) where sigma = interfacial energy [interfacial tension (IFT)] between the oil and water, sigma = interfacial energy between the oil and solid, sigma = interfacial energy between the water and solid, and theta = contact angle, the angle of the water/oil/solid contact line. By convention, the contact angle, theta, is measured through the water. The interfacial energy sigma is equal to or, the IFT. As shown in Fig. 1, when the contact angle is less than 90 deg. [1.6 rad], the surface is preferentially water-wet, and when it is greater than 90 deg. [1.6 rad], the surface is preferentially oil-wet. For almost all pure fluids and clean preferentially oil-wet. For almost all pure fluids and clean rock or polished crystal surfaces, sigma, and sigma, have values such that theta=0 deg. [0 rad]. When compounds such as crude-oil components are adsorbed on rock surfaces, these interfacial energies are changed unequally. This changes theta and hence the wettability. The farther theta is from 90 deg. [1.6 rad], the greater the wetting preference for one fluid over another. If theta is exactly 90 deg. [1.6 rad], neither fluid preferentially wets the solid. As shown in Table 1, when preferentially wets the solid. As shown in Table 1, when theta is between 0 and 60 to 75 deg. [0 and 1 to 1.3 rad], the system is defined as water-wet. When theta is between 180 and 105 to 120 deg. [3.1 and 1.8 to 2.1 rad], the system is defined as oil-wet. In the middle range of contact angles, a system is neutrally or intermediately wet. The contact angle that is chosen as the cutoff varies from paper to paper. The term a sigma - sigma is is sometimes called the adhesion tension, theta : (2) The adhesion tension is positive when the system is water-wet, negative when the system is oil-wet, and near zero when the system is neutrally wet. Methods of Wettability Measurement Many different methods have been proposed for measuring the wettability of a system. They include quantitative methods-contact angles, imbibition and forced displacement (Amott), and USBM wettability method-and qualitative methods-imbibition rates, microscope examination, flotation, glass slide method, relative permeability curves, permeability/saturation relationships, permeability curves, permeability/saturation relationships, capillary pressure curves, capillarimetric method, displacement capillary pressure, reservoir logs, nuclear magnetic resonance, and dye adsorption. Although no single accepted method exists, three quantitative methods generally are used:contact-angle measurement,the Amott method (imbibition and forced displacement), andthe USBM method. The contact angle measures the wettability of a specific surface, while the Amott and USBM methods measure the average wettability of a core. A comparison of the wettability criteria for the three methods is shown in Table 1. The remaining tests in the list are qualitative, each with somewhat different criteria to determine the degree of water or oil wetness. JPT P. 1246

Publisher

Society of Petroleum Engineers (SPE)

Subject

Strategy and Management,Energy Engineering and Power Technology,Industrial relations,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3