Analysis of Carbon Nanoparticle Coatings via Wettability

Author:

Griffo Raffaella1ORCID,Di Natale Francesco2ORCID,Minale Mario1ORCID,Sirignano Mariano2,Parisi Arianna2,Carotenuto Claudia1ORCID

Affiliation:

1. Dipartimento di Ingegneria, Università della Campania “L. Vanvitelli”, 81031 Aversa (Caserta), Italy

2. Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università di Napoli “Federico II”, 80125 Napoli, Italy

Abstract

Wettability, typically estimated through the contact angle, is a fundamental property of surfaces with wide-ranging implications in both daily life and industrial processes. Recent scientific interest has been paid to the surfaces exhibiting extreme wettability: superhydrophobic and superhydrophilic surfaces, characterized by high water repellency and exceptional water wetting, respectively. Both chemical composition and morphology play a role in the determination of the wettability “performance” of a surface. To tune surface-wetting properties, we considered coatings of carbon nanoparticles (CNPs) in this study. They are a new class of nanomaterials synthesized in flames whose chemistry, dimension, and shape depend on combustion conditions. For the first time, we systematically studied the wettability of CNP coatings produced in a controlled rich ethylene/air flame stabilized over a McKenna burner. A selected substrate was intermittently inserted in the flame at 15 mm above the burner to form a thin coating thanks to a thermophoretic-driven deposition mechanism. The chemical-physical quality and the deposed quantity of the CNPs were varied by opportunely combing the substrate flame insertion number (from 1 to 256) and the carbon-to-oxygen ratio, C/O (from 0.67 to 0.87). The wettability of the coatings was evaluated by measuring the contact angle, CA, with the sessile drop method. When the C/O = 0.67, the CNPs were nearly spherical, smaller than 8 nm, and always generated hydrophilic coatings (CA < 35°). At higher C/O ratios, the CNPs reached dimensions of 100 nm, and fractal shape aggregates were formed. In this case, either hydrophilic (CA < 76°) or superhydrophobic (CA ~166°) behavior was observed, depending on the number of carbon nanoparticles deposed, i.e., film thickness. It is known that wettability is susceptible to liquid surface tension, and therefore, tests were conducted with different fluids to establish a correlation between the flame conditions and the nanostructure of the film. This method offers a fast and simple approach to determining mesoscale information for coating roughness and topographical homogeneity/inhomogeneity of their surfaces.

Funder

Italian Ministry of University and Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3