Real-time capable virtual NOx sensor for diesel engines based on a two-Zone thermodynamic model

Author:

Vihar Rok,Baškovič Urban Žvar,Katrašnik Tomaž

Abstract

This paper presents a control-oriented thermodynamic model capable of predicting nitrogen oxides (NOx) emissions in diesel engines. It is derived from zero-dimensional combustion model using in-cylinder pressure as the input. The methodology is based on a two-zone thermodynamic model which divides the combustion chamber into a burned and unburned gas zone. The original contribution of proposed method arises from: (1) application of a detailed two-zone modeling framework, developed in a way that the thermodynamic equations could be solved in a closed form without iterative procedure, which provides the basis for achieving high level of predictiveness, on the level of real-time capable models and (2) introduction of relative air-fuel ratio during combustion as a main and physically motivated calibration parameter of the NOx model. The model was calibrated and validated using data sets recorded in two different direct injection diesel engines, i.e. a light and a heavy-duty engine. The model is suitable for real-time applications since it takes less than a cycle to complete the entire closed cycle thermodynamic calculation including NOx prediction, which opens the possibility of integration in the engine control unit for closed-loop or feed-forward control.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3