A PIV-Guided Large-Eddy Simulation of In-Cylinder Flows

Author:

Nicollet Franck,Krüger Christian,Schorr Jürgen,Nicoud Edouard,Colin Olivier,Angelberger Christian,Bode Johannes,Böhm Benjamin

Abstract

A combination of Large-Eddy Simulation (LES) and Particle Image Velocimetry (PIV) was utilized to investigate the three-dimensional in-cylinder flow within an optically accessible Direct Injection Spark Ignition (DISI) engine at motored engine operation. The PIV measurements were used to guide the meshing procedure by identifying the regions were refinements and improvements were needed. From the iteratively optimized meshes LES results are shown from two selected meshes, an intermediate coarse mesh and the final optimized mesh, and compared to PIV measurements. The evolution of the intake flow and the tumble in the central tumble plane during compression are presented and discussed. Exploitation of the LES results allowed showing the influence of out-of-plane velocities along the cylinder liner impacting the formation of the tumble flow. The optimized mesh was then used to investigate the influence of the spark plug on the in-cylinder flow. For the studied engine the spark plug had a significant impact on the evolution of the tumble flow during compression. Finally 35 engine cycles were simulated using the optimized mesh with the spark plug in place. Velocity distributions in a region below the spark plug are shown and compared with PIV results. The two-sample Kolmogorov-Smirnov test revealed a strong similarity between the velocity distributions obtained by PIV and LES, thus validating the potential of LES for investigating cycle-to-cycle variability.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference26 articles.

1. Lückert P., Breitbach H., Waltner A., Merdes N., Weller R (2011) Potentials of spray-guided combustion systems in combination with downsizing concepts, in 32nd International Vienna Motor Symposium 2011, 5-6 May, Vienna.

2. Vent G., Enderle C., Merdes N., Kreitmann F., Weller R. (2012) The new 2.0 l Turbo engine from the Mercedes-Benz 4-cylinder engine family, in 21st Aachen Colloquium Automobile and Engine Technology.

3. Influence of three-dimensional in-cylinder flows on cycle-to-cycle variations in a fired stratified DISI engine measured by time-resolved dual-plane PIV

4. Cause-and-effect chain from flow and spray to heat release during lean gasoline combustion operation using conditional statistics

5. Influence of three-dimensional in-cylinder flows on cycle-to-cycle variations in a fired stratified DISI engine measured by time-resolved dual-plane PIV

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3