Reactive voltage control strategy of distribution network considering the reliability of photovoltaic power supply

Author:

Liang Jifeng,Li Tiecheng,Zhang Rui,Dong Liangyuan

Abstract

Photovoltaic power actively regulates the reactive power of the active distribution network, leading to the increase of output current of the photovoltaic inverter. Consequently, the temperature rise significantly impacts the maximum junction temperature of the Insulated Gate Bipolar Transistor (IGBT), leading to fluctuations in the junction temperature. To realize the active support of the reactive power of the photovoltaic power supply and ensure its reliable operation, a reactive voltage control strategy of the active distribution network considering the reliability of the photovoltaic power supply is proposed. Considering the reactive power support capability of the distributed photovoltaic power, a multi-objective reactive power optimization model for active distribution networks is established based on IGBT maximum junction temperature, distribution network losses, and photovoltaic active power reduction. The effectiveness of the proposed strategy in enhancing the minimum lifetime, average lifetime, and reliability of photovoltaic power sources is verified using the IEEE 33-node standard distribution system. The results show that under the strategy proposed in this paper, the average junction temperature and junction temperature fluctuation of IGBT are effectively reduced, and the minimum lifetime and average lifetime of all IGBTs are increased by 8 years and 4 years respectively.

Funder

Science and Technology Project of Hebei Electric Power Company

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3