EPCMSDB: Design of an ensemble predictive control model for solar PV MPPT deployments via dual bioinspired optimizations

Author:

Hole Shreyas RajendraORCID,Das Goswami AgamORCID

Abstract

With the increasing demand for renewable energy, solar power has emerged as a promising option for sustainable power generation. However, the effectiveness and efficiency of solar power systems rely on the ability to effectively manage their performance, making it essential to develop efficient control models. This paper proposes a novel ensemble predictive control model for solar deployments using bio-inspired optimizations to improve load-connected solar deployments’ performance. The proposed model integrates multiple control devices, including Maximum Power Point Tracker, Proportional-Integral-Derivative, Proportional-Integral, and Fuzzy Logic Controllers, to selectively control the solar Photovoltaic systems. The proposed model incorporates a predictive control operation utilizing an LSTM-GRU (Long Short-Term Memory-Gated Recurrent Unit) with the VARMA (Vector Auto-Regressive Moving Average) model, which can accurately predict the future power generation of the solar system. This feature can facilitate efficient energy management and increase the system’s performance for different use cases. Implement a SEPIC (Single Ended Primary Inductor Capacitor) converter design to improve the system’s overall efficiency levels. To validate the effectiveness of the proposed approach, the author conducted experiments using real-world data and compared the proposed results with other control strategies. The results demonstrate that the ensemble predictive control model based on bio-inspired optimizations outperforms the existing control models regarding accuracy, efficiency, and stability levels. The proposed model has the potential to significantly improve the performance of load-connected solar deployments, offering a more practical approach to solar power generation. The combination of predictive control operations with bio-inspired optimizations can facilitate the design of sustainable energy systems with higher efficiency and accuracy.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3