A review on polymer, gas, surfactant and nanoparticle adsorption modeling in porous media

Author:

Mohammed Isah,Afagwu Clement C.,Adjei Stephen,Kadafur Ibrahim B.,Jamal Mohammad S.ORCID,Awotunde Abeeb A.ORCID

Abstract

Adsorption is a rock surface phenomenon and has increasingly become popular, especially in particle-transport applications across many fields. This has drawn a remarkable number of publications from the industry and academia in the last decade, with many review articles focused on adsorption of polymers, surfactants, gas, and nanoparticles in porous media with main applications in Enhanced Oil Recovery (EOR). The discussions involved both experimental and modeling approaches to understanding and efficiently mimicking the particle transport in a bid to solve pertinent problems associated with particle retention on surfaces. The governing mechanisms of adsorption and desorption constitute an area under active research as many models have been proposed but the physics has not been fully honored. Thus, there is a need for continuous research effort in this field. Although adsorption/desorption process is a physical phenomenon and a reversible process resulting from inter-molecular and the intramolecular association between molecules and surfaces, modeling these phenomena requires molecular level understanding. For this reason, there is a wide acceptance of molecular simulation as a viable modeling tool among scientists in this area. This review focuses on existing knowledge of adsorption modeling as it relates to the petroleum industry cutting across flow through porous media and EOR mostly involving polymer and surfactant retention on reservoir rocks with the associated problems. The review also analyzes existing models to identify gaps in research and suggest some research directions to readers.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3