The Role of Amphiphilic Nanosilica Fluid in Reducing Viscosity in Heavy Oil

Author:

Wang Yuejie1,Zheng Wei23,Zhang Hongyou4,Tang Chenyang23,Zhang Jun1,Yu Dengfei1,Lu Xuanfeng56,Li Gang56

Affiliation:

1. CNOOC China Limited-Pengbo Operating Company, Tianjin 300459, China

2. National Key Laboratory of Offshore Oil and Gas Exploitation, Beijing 102209, China

3. CNOOC Research Institute Co., Ltd., Beijing 100028, China

4. CNOOC Tianjin Branch, Binhai New Area, Tianjin 300450, China

5. National Engineering Research Center for Oil & Gas Drilling and Completion Technology, School of Petroleum Engineering, Yangtze University, Wuhan 430100, China

6. Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan 430100, China

Abstract

Heavy oil accounts for a considerable proportion of the world’s petroleum resources, and its exploitation helps to mitigate reliance on conventional oil resources and diversify energy supply. However, due to the high viscosity and high adhesion characteristics of heavy oil, conventional methods such as thermal recovery, emulsification, and dilution have significant limitations and cannot meet the growing demands for heavy oil production. In this study, 3-propyltrimethoxysilane (MPS) was used to modify and graft amphiphilic surfactants (AS) onto nanosilica to prepare a salt-resistant (total mineralization > 8000 mg/L, Ca2+ + Mg2+ > 1000 mg/L) and temperature-resistant (250 °C) nanosilicon viscosity reducer (NSD). This article compares amphiphilic surfactants (AS) as conventional viscosity-reducing agents with NSD. FTIR and TEM measurements indicated successful bonding of 3-propyltrimethoxysilane to the surface of silica. Experimental results show that at a concentration of 0.2 wt% and a mineralization of 8829 mg/L, the viscosity reduction rates of thick oil (LD-1) before and after aging were 85.29% and 81.36%, respectively, from an initial viscosity of 38,700 mPa·s. Contact angle experiments demonstrated that 0.2 wt% concentration of NSD could change the surface of reservoir rock from oil-wet to water-wet. Interfacial tension experiments showed that the interfacial tension between 0.2 wt% NSD and heavy oil was 0.076 mN/m. Additionally, when the liquid-to-solid ratio was 10:1, the dynamic and static adsorption amounts of 0.2 wt% NSD were 1.328 mg/g-sand and 0.745 mg/g-sand, respectively. Furthermore, one-dimensional displacement experiments verified the oil recovery performance of NSD at different concentrations (0.1 wt%, 0.15 wt%, 0.2 wt%, 0.25 wt%) at 250 °C and compared the oil recovery efficiency of 0.2 wt% NSD with different types of demulsifiers. Experimental results indicate that the recovery rate increased with the increase in NSD concentration, and 0.2 wt% NSD could improve the recovery rate of heavy oil by 22.8% at 250 °C. The study of nano-demulsification oil recovery systems can effectively improve the development efficiency of heavy oil.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3