Characterization of the ECN spray A in different facilities. Part 1: boundary conditions characterization

Author:

Ben Houidi MoezORCID,Hespel Camille,Bardi Michele,Nilaphai Ob,Malbec Louis-Marie,Sotton Julien,Bellenoue Marc,Strozzi Camille,Ajrouche Hugo,Foucher Fabrice,Moreau Bruno,Rousselle Christine,Bruneaux Gilles

Abstract

The Engine Combustion Network (ECN) community has greatly contributed to improve the fundamental understanding of spray atomization and combustion at conditions relevant to internal combustion engines. In this context, standardized spray experiments have been defined to facilitate the comparison of experimental and simulation studies performed in different facilities and with different models. This operating mode promotes collaborations among research groups and accelerates the advancement of research on spray. In efforts to improve the comparability of the ECN spray A experiments, it is of high importance to review the boundary conditions of different devices used in the community. This work is issued from the collaboration in the ECN France project, where two new experimental facilities fromPPRIME(Poitiers) andPRISME(Orleans) institutes are validated to perform spray A experiments. The two facilities, based on Rapid Compression Machine (RCM) design, have been investigated to characterize their boundary conditions (e.g., flow velocity as well as fuel and gas temperatures). A set of standardized spray experiments were performed to compare their results with those obtained in other facilities, in particular the Constant Volume Pre-burn (CVP) vessel atIFPEN. It is noteworthy that it is the first time that RCM type facilities are used in such a way within the ECN. This paper (part 1) focuses on the facilities description and the fine characterization of their boundary conditions. A further paper (part 2) will present the results obtained with the same facilities performing ECN standard spray A characterizations. The reported review of thermocouple thermometry highlights that it is necessary to use thin-wires and bare-bead junction as small as possible. This would help to measure the temperature fluctuations with a minimal need for error corrections, which are highly dependent on the proper estimation of the velocity through the junction, and therefore it may introduce important uncertainties. Temperature heterogeneities are observed in all spray A devices. The standard deviation of the temperature distribution at the time of injection is approximately 5%. We report time-resolved temperature measurement fromPPRIMERCM, performed in the near nozzle area during the injection. In inert condition, colder gases from the boundary layer are entrained toward the mixing area of the spray causing a further deviation from the target temperature. This emphasizes the importance of the temperature in the boundary (wall) layer. In reacting condition, the temperature of these entrained gases increases by the effect of the increased pressure, as the RCM has a relatively small volume. Generally, the velocity and turbulence levels are an order of magnitude higher in RCM and constant pressure flow compared to CVP vessels. The boundary characterization presented here will be the base for discussing spray behavior in the part 2 of this paper.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3