Model-based production optimization under geological and economic uncertainties using multi-objective particle swarm method

Author:

Moshir Farahi Mohammad MahdiORCID,Ahmadi MohammadORCID,Dabir Bahram

Abstract

Optimization of the water-flooding process in the oilfields is inherently subject to several uncertainties arising from the imperfect reservoir subsurface model and inadequate data. On the other hand, the uncertainty of economic conditions due to oil price fluctuations puts the decision-making process at risk. It is essential to handle optimization problems under both geological and economic uncertainties. In this study, a Pareto-based Multi-Objective Particle Swarm Optimization (MOPSO) method has been utilized to maximize the short-term and long-term production goals, robust to uncertainties. Some modifications, including applying a variable in the procedure of leader determination, namely crowding distance, a corrected archive controller, and a changing boundary exploration, are performed on the MOPSO algorithm. These corrections led to a complete Pareto front with enough diversity on the investigated model, covering the entire solution space. Net Present Value (NPV) is considered the first goal that represents the long-term gains, while a highly discounted NPV (with a discount rate of 25%) has been considered short-term gains since economic uncertainty risk grows with time. The proposed optimization method has been used to optimize water flooding on the Egg benchmark model. Geological uncertainty is represented with ensembles, including 100 model realizations. The k-means clustering method is utilized to reduce the realizations to 10 to reduce the computing cost. The Pareto front is obtained from Robust Optimization (RO) by maximizing average NPV over the ensembles, as the conservative production plan. Results show that optimization over the ensemble of a reduced number of realizations by the k-means technique is consistent with all realizations’ ensembles results, comparing their cumulative density functions. Furthermore, 10 oil price functions have been considered to form the economic uncertainty space. When SNPV and LNPV are optimized, considering uncertainty in oil price scenarios, the Pareto front’s production scenarios are robust to oil price fluctuations. Using the robust Pareto front of LNPV versus SNPV in both cases, one can optimize production strategy conservatively and update it according to the current reservoir and economic conditions. This approach can help a decision-maker to handle unexpected situations in reservoir management.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3