Why we should invest further in the development of internal combustion engines for road applications

Author:

Lešnik Luka,Kegl Breda,Torres-Jiménez EloísaORCID,Cruz-Peragón Fernando

Abstract

The majority of on-road vehicles today are powered by internal combustion engines, which are, in most cases, burning petroleum-derived liquid fuels mixed with bio-components. The power to weight ratio of internal combustion engines combined with the high energy content of conventional fuels, which can be refilled easily in matter of minutes, makes them ideal for all kinds of road transportation. Since the introduction of EURO emissions norms, the emissions from the Transport sector in the European Union have undergone significant reduction. There are several alternatives to fossil fuels with similar properties, which can replace their usage in the Transport sector. The main focus of research in recent decades has been on biofuels, which can be produced from several sources. The production of biofuels is usually energy more intensive than production of fossil fuels, but their usage can contribute to emission reduction in the Transport sector. In recent years, a lot of effort was also put into promotion of electric vehicles as zero emissions vehicles. This statement should be reconsidered, since the greenhouse impact of electrical vehicles is not negligible. Conversely, in some cases, an electrical vehicle can have an even higher emission impact than modern vehicles with sophisticated internal combustion engines. This is characteristic for countries where the majority of the electricity is produced in coal power plants. With the decrease of greenhouse gas emissions in the Electricity Production sector, and with the increase of battery capacity, the role of electric vehicles in the Transport sector will probably increase. Despite significant research and financial investments in electric vehicles development, the transport sector in near future will be mostly powered by internal combustion engines and petroleum-derived liquid fuels. The amount of pollution from transport sector will be further regulated with stricter emission norms combined with smaller amount of alternative fuel usage.

Publisher

EDP Sciences

Subject

Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering

Reference54 articles.

1. BP Statistical Review of World Energy. (2018) https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2018-full-report.pdf [accessed 12 Mar 2019].

2. IEA. (2018) Global Energy & CO2 Status Report 2017, International Energy Agency.

3. BP Energy outlook. (2017) https://www.bp.com/content/dam/bp/pdf/energyeconomics/energy-outlook-2017/bp-energy-outlook-2017.pdf [accessed 26 Feb 2018].

4. International Energy Outlook. (2016) Energy Information Administration, 2016.

5. EEA. (2018) Progress of EU transport sector towards its environment and climate objectives, European Environment Agency.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3