Abstract
Without Enhanced Oil Recovery (EOR) operations, the final recovery factor of most hydrocarbon reservoirs would be limited. However, EOR can be an expensive task, especially for methods involving gas injection. On the other hand, aqueous injection in fractured reservoirs with small oil-wet or mixed-wet matrices will not be beneficial if the rock wettability is not changed effectively. In the current research, an unpracticed fabrication method was implemented to build natively oil-wet, fractured micromodels. Then, the efficiency of microbial flooding in the micromodels, as a low-cost EOR method, is investigated using a new-found bacteria, Bacillus persicus. Bacillus persicus improves the sweep efficiency via reduction of water/oil IFT and oil viscosity, in-situ gas production, and wettability alteration mechanisms. In our experiments, the microbial flooding technique extracted 65% of matrix oil, while no oil was produced from the matrix system by water or surfactant flooding.
Subject
Energy Engineering and Power Technology,Fuel Technology,General Chemical Engineering
Reference49 articles.
1. Saidi A.M. (1983) Simulation of naturally fractured reservoirs, in: SPE Reservoir Simulation Symposium, 15–18 November, San Francisco, California, Society of Petroleum Engineers.
2. Fernø M.A. (2012) Enhanced oil recovery in fractured reservoirs, in Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites, IntechOpen, New York.
3. Allan J., Sun S.Q. (2003) Controls on recovery factor in fractured reservoirs: lessons learned from 100 fractured fields, in SPE Annual Technical Conference and Exhibition, 5–8 October, Denver, Colorado, Society of Petroleum Engineers.
4. Saidi A.M., Tehrani D.H., Wit K. (1979) PD 10 (3) mathematical simulation of fractured reservoir performance, based on physical model experiments, in: 10th World Petroleum Congress, 9–14 September, Bucharest, Romania, World Petroleum Congress.
5. van Golf-Racht T.D. (1982) Fundamentals of fractured reservoir engineering, Vol. 12, Elsevier.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献