Performance Evaluation of Bacterial Consortia from Low-Permeability Reservoir in Ordos Basin

Author:

Bian Ziwei1ORCID,Zhi Zena1ORCID,Zhang Xiangchun2ORCID,Qu Yiqian1ORCID,Wei Lusha3ORCID,Wu Hanning1ORCID,Wu Yifei4ORCID

Affiliation:

1. Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, Xi’an 710069, China

2. College of Biology and Agriculture, Zunyi Normal College, Zunyi 563006, China

3. Department of Food and Nutrition Engineering, Shaanxi Normal University, Xi’an 710119, China

4. College of Food Science and Technology, Northwest University, Xi’an 710069, China

Abstract

The combination of strains of different species and genera may enhance the effects of single bacteria, surpass the tolerance upper limit, and optimize the viscosity reduction and degradation. In this study, six strains were isolated in low permeability layers of the Ordos Basin and were combined to verify the effect of the consortium strains. The selected single strains have good emulsifying and viscosity-reducing effects, but their degradation components are different. SC4561 (Bacillus cereus), SC4551 (Bacillus sp.), and H-1 (Brevibacillus sp.) form consortium A, and SC4534 (2) (Bacillus sp.), SC4542 (Bacillus licheniformis), and A-3 (Bacillus licheniformis) form consortium B. The performance of the mixed strains was evaluated by the analysis of change in emulsification rate, crude oil composition, viscosity, and the tolerance (temperature, salinity, and pH) through GC-MS, rotational rheometer, and other methods. The results showed that the temperature tolerance of the consortium strains was improved by 5-7°C. Consortium B had higher emulsibility ( E 24 was higher than 40% in average) and viscosity degradation (above 35%), and the crude oil in consortium B has almost no wall adhesion. The components of crude oil that consortia use were still diverse, including both long- and short-chain hydrocarbons. However, the proportion of long-chain n-alkanes is further reduced compared with that of single bacteria, and the highest ratio was reduced by 23.81% (B-ALL). At the same time, they also had effects on aromatic hydrocarbons with complex structures (phenanthrene and phenanthrene). This research confirms the enhanced effect of consortium bacteria on single bacteria, facilitating the implementation of microbial enhanced oil recovery technology in the future.

Funder

Northwestern University

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3