Interactions of Pulmonary Collectins with Bordetella bronchiseptica and Bordetella pertussis Lipopolysaccharide Elucidate the Structural Basis of Their Antimicrobial Activities

Author:

Schaeffer Lyndsay M.1,McCormack Francis X.2,Wu Huixing2,Weiss Alison A.1

Affiliation:

1. Department of Molecular Genetics, Biochemistry, and Microbiology

2. Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, Ohio

Abstract

ABSTRACT Surfactant proteins A (SP-A) and D (SP-D) play an important role in the innate immune defenses of the respiratory tract. SP-A binds to the lipid A region of lipopolysaccharide (LPS), and SP-D binds to the core oligosaccharide region. Both proteins induce aggregation, act as opsonins for neutrophils and macrophages, and have direct antimicrobial activity. Bordetella pertussis LPS has a branched core structure and a nonrepeating terminal trisaccharide. Bordetella bronchiseptica LPS has the same structure, but lipid A is palmitoylated and there is a repeating O-antigen polysaccharide. The ability of SP-A and SP-D to agglutinate and permeabilize wild-type and LPS mutants of B. pertussis and B. bronchiseptica was examined. Previously, wild-type B. pertussis was shown to resist the effects of SP-A; however, LPS mutants lacking the terminal trisaccharide were susceptible to SP-A. In this study, SP-A was found to aggregate and permeabilize a B. bronchiseptica mutant lacking the terminal trisaccharide, while wild-type B. bronchiseptica and mutants lacking only the palmitoyl transferase or O antigen were resistant to SP-A. Wild-type B. pertussis and B. bronchiseptica were both resistant to SP-D; however, LPS mutants of either strain lacking the terminal trisaccharide were aggregated and permeabilized by SP-D. We conclude that the terminal trisaccharide protects Bordetella species from the bactericidal functions of SP-A and SP-D. The O antigen and palmitoylated lipid A of B. bronchiseptica play no role in this resistance.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3