Affiliation:
1. Institut für Klinische Mikrobiologie, Immunologie und Hygiene, FAU Erlangen-Nürnberg, D-91054 Erlangen, Germany
Abstract
ABSTRACT
Gastrointestinal infections with
Salmonella enterica
serovars have different clinical outcomes that range from localized inflammation to a life-threatening systemic disease in the case of typhoid fever. Using a mouse model of systemic salmonellosis, we investigated the contribution of neutrophils to the innate immune defense against
Salmonella
after oral infection. Neutrophil infiltration was dependent on the bacterial burden in various infected organs (Peyer's patches, mesenteric lymph nodes, spleen, and liver). However, the massive infiltration of neutrophils did not allow clearance of an infection with wild-type
Salmonella
, presumably due to protection of intracellular
Salmonella
against neutrophil activities. A
Salmonella
mutant strain deficient in
Salmonella
pathogenicity island 2 (SPI2) was able to infect systemic sites, but its replication was highly restricted and it did not cause detectable attraction of neutrophils. Neutrophil depletion by antibody treatment of mice did not restore the virulence of SPI2 or auxotrophic mutant strains, supporting the hypothesis that attenuation of the strains is not due to greater susceptibility to neutrophil killing. Our observations reveal that neutrophils have completely different roles during systemic salmonellosis and localized gastrointestinal infections. In the latter conditions, rapid neutrophil attraction efficiently prevents the spread of the pathogen, whereas the neutrophil influx is delayed during systemic infections and cannot protect against lethal bacteremia.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Immunology,Microbiology,Parasitology
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献