Transcriptome of Uropathogenic Escherichia coli during Urinary Tract Infection

Author:

Snyder Jennifer A.1,Haugen Brian J.2,Buckles Eric L.3,Lockatell C. Virginia3,Johnson David E.34,Donnenberg Michael S.3,Welch Rodney A.2,Mobley Harry L. T.1

Affiliation:

1. Department of Microbiology and Immunology

2. Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, Wisconsin

3. Division of Infectious Diseases, University of Maryland School of Medicine

4. Department of Veterans Affairs, Baltimore, Maryland

Abstract

ABSTRACT A uropathogenic Escherichia coli strain CFT073-specific DNA microarray that includes each open reading frame was used to analyze the transcriptome of CFT073 bacteria isolated directly from the urine of infected CBA/J mice. The in vivo expression profiles were compared to that of E. coli CFT073 grown statically to exponential phase in rich medium, revealing the strategies this pathogen uses in vivo for colonization, growth, and survival in the urinary tract environment. The most highly expressed genes overall in vivo encoded translational machinery, indicating that the bacteria were in a rapid growth state despite specific nutrient limitations. Expression of type 1 fimbriae, a virulence factor involved in adherence, was highly upregulated in vivo. Five iron acquisition systems were all highly upregulated during urinary tract infection, as were genes responsible for capsular polysaccharide and lipopolysaccharide synthesis, drug resistance, and microcin secretion. Surprisingly, other fimbrial genes, such as pap and foc/sfa , and genes involved in motility and chemotaxis were downregulated in vivo. E. coli CFT073 grown in human urine resulted in the upregulation of iron acquisition, capsule, and microcin secretion genes, thus partially mimicking growth in vivo. On the basis of gene expression levels, the urinary tract appears to be nitrogen and iron limiting, of high osmolarity, and of moderate oxygenation. This study represents the first assessment of any E. coli pathotype's transcriptome in vivo and provides specific insights into the mechanisms necessary for urinary tract pathogenesis.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3