Abundant urinary amino acids activate glutamine synthetase-encoding glnA by two different mechanisms in Escherichia coli

Author:

Urs Karthik1,Zimmern Philippe E.2ORCID,Reitzer Larry1ORCID

Affiliation:

1. Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA

2. Department of Urology, University of Texas Southwestern Medical School, Dallas, Texas, USA

Abstract

ABSTRACT Growth of uropathogenic Escherichia coli in the bladder induces transcription of glnA which codes for the ammonia-assimilating glutamine synthetase (GS) despite the normally suppressive high ammonia concentration. We previously showed that the major urinary component, urea, induces transcription from the Crp-dependent glnAp1 promoter, but the urea-induced transcript is not translated. Our purpose here was to determine whether the most abundant urinary amino acids, which are known to inhibit GS activity in vitro , also affect glnA transcription in vivo . We found that the abundant amino acids impaired growth, which glutamine and glutamate reversed; this implies inhibition of GS activity. In strains with deletions of crp and glnG that force transcription from the glnAp2 and glnAp1 promoters, respectively, we examined growth and glnA transcription with a glnA-gfp transcriptional fusion and quantitative reverse transcription PCR with primers that can distinguish transcription from the two promoters. The abundant urinary amino acids stimulated transcription from the glnAp2 promoter in the absence of urea but from the glnAp1 promoter in the presence of urea. However, transcription from glnAp1 did not produce a translatable mRNA or GS as assessed by a glnA-gfp translational fusion, enzymatic assay of GS, and Western blot to detect GS antigen in urea-containing media. We discuss these results within the context of the extremely rapid growth of uropathogenic E. coli in urine, the different factors that control the two glnA promoters and possible mechanisms that either overcome or bypass the urea-imposed block of glutamine synthesis during bacterial growth in urine. IMPORTANCE Knowledge of the regulatory mechanisms for genes expressed at the site of infection provides insight into the virulence of pathogenic bacteria. During urinary tract infections—most often caused by Escherichia coli —growth in urine induces the glnA gene which codes for glutamine synthetase. The most abundant urinary amino acids amplified the effect of urea which resulted in hypertranscription from the glnAp1 promoter and, unexpectedly, an untranslated transcript. E. coli must overcome this block in glutamine synthesis during growth in urine, and the mechanism of glutamine acquisition or synthesis may suggest a possible therapy.

Publisher

American Society for Microbiology

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3